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HFT



High-Frequency Trading

• Dynamics/signals timescale < seconds 

• Demanding telecom/network & software/
hardware engineering 

• Machine Learning, Simulation, Experimentation 

• Revenue-generating, agency execution

- microstructure 
- ex, trading strategy: buy/sell for profit 
- ex, execution system: fill an order for a customer 



HFT: Technological Progress

• <1980’s: telephone, runners 

• 1980’s/1990’s: computers, handhelds 

• 2000’s: colo, fiber, FPGA 

• 2010’s: microwave, mmwave, shortwave 

• Technology is commoditized and widespread

- ongoing computerization of trading — like every other industry; steady progress 
- called “program trading” in 1980s 
- “electronic/algorithmic trading” in 1990s & early 2000s 
- “high-frequency trading” since then 
- roughly (by end of each decade): 

- 1980s: seconds 
- 1990s: millis 
- 2000s: micros 
- 2010s: nanos 

- microwave: long distance, med. bandwitdth 
- mmwave: short distance, high bandwidth 
- shortwave: very long distance, very low bandwidth 
- HFTs usually on the cutting edge of this progress 
-



HFT: Automation of Trading 
“Stack”

• Exchange: where trading occurs 

• Liquidity Provision: be available to trade  

• Arbitrage: keep prices at fair values 

• Execution: trade on behalf of a customer

- bottom three are HFT 
- market “stack” is like: 

- (bottom) exchange, MM/arbitrageurs, execution services, investors (top) 

- liquidity provision reduces the time to trade [like a used car dealer; easier than scanning posts on Craigslist] 
- arbitrage makes sure assets are priced correctly, so you get a fair price when you trade [Do you own SPY or another ETF?  Did you buy it at a fair price?  

How do you know?] 

- You an investor (top of stack) goes to an exchange to trade and there’s a counterparty to trade with at a reasonable cost (liquidity), the asset are priced 
fairly (arbitrage), then the market is functioning well. 

- execution algos takes work off of your hands; you hire a expert to do the grunt work and know the market [like a real estate agent helps you buy a 
house]; ex: (i) slowly work a large order, (ii) offer an interface that simplifies access to a large number of related markets (i.e., US equities) 



Questions?



Optimization



A Trading Strategy

If signal > threshold: Buy Long 

If signal < -threshold: Sell Short 

If end of day: Liquidate and Stop 

Rule set called a policy  

threshold is a parameter 

- Keep this example in mind as we go along  

- Best threshold value depends on cost to trade, signal quality, how fast signal changes (decorrelates), cost to liquidate at EOD, and your definition of 
strategy quality (pnl, pnl - risk, etc.) 

- How do you find the best threshold? That’s the subject of this talk…



Prediction Control

independent estimations sequence of decisions

known targets no targets

error function arbitrary: pnl, sharpe, …

signal weights thresholds, weights, limits, …

(signal, response) simulation, reality

- a prediction might be a useful component of a trading strategy, but the strategy is a controller 
- prediction: ex: midprice 1 second from now, 1 minute from now, next trade price, etc.* 
- “reward” for good decision might be given over time, while making other decisions; hard to determine *exactly which decisions responsible for pnl, etc. 
- could make prediction a subproblem of controller (strategy) design; but not always clear what the target should be



Simulation …

• can evaluate sequence of decisions, long-term 
effects 

• includes risk, liquidity 

• cheap: run many sims

- long-term effects: ex., order has to sit in queue for long time 
- cheap compared to trading



… vs. Reality

• But: Market reacts to our actions 

• But: Hidden liquidity is … hidden 

• But: Latencies complicated 

• But: Exchange is complex 

• But: Unknown unknowns

- trying to simulate a system with hidden state and complex dynamics 
- matching engine processes our orders — even if they don’t get filled; takes time, changes market 
- other traders (computers) see our orders/executions in public data and make different decisions than they would/could have 
- Any visible queue can have hidden liquidity, too + dark pools = more hidden queues than visible; *most* queues are hidden (not most shares, but most 

queues) 
- long-holding-time strategies (i.e., days) may treat all of these effects as a small, noisy cost; but they are significant for HFT where profits/share are on par 

with these costs 
- latencies possible at every network node; latencies coupled to each other and likely also to signals 
- exchange: what book is the exchange seeing right now?  How are nearly-simultaneous messages reordered? How do complex order types *really* work? 
- simulation useful for testing code quality, optimization methodology, operational risk assessment 



Private Data?

• Model market’s response to our orders, cancels 

• Better, but not great: 

• What if we placed an order at a different time? 

• What if we *didn’t* place an order at this time?

- incorporate private data (our orders and cancels) into simulation 
- can build model of execution, but face 

- little private data to work with (relative to public data) 
- missing “counterfactuals” — what if we took a different action? 



Wrong Objective

• Quality estimate in simulation != quality estimate 
in real trading 

• similar to overfitting 

• “Online-Offline Gap” [ FB ML Field Guide ] 

• “Reality Gap” [ Ev. Robotics ]

- not unique to trading; pervasive in engineering 

- similar to overfitting in SL problem: error function over your data sample != error function over full population 
- but worse: your simulated dynamics might not even be a reasonable estimate of real dynamics; sometimes called “model bias” or overfitting of “tasks”, 

but less-clearly understood than SL overfitting (sample bias) 

- Facebook Field Guide to ML [ https://research.fb.com/videos/the-facebook-field-guide-to-machine-learning-episode-6-experimentation/ ] 
- M. Palmer, D. Miller, An evolved neural controller for bipedal walking with dynamic balance [http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.1016.6201&rep=rep1&type=pdf] 



Questions?



Experiment

Prescription: experiment 



Experimentation

• Measure quality (Q) of parameters by trading 

• Measurement has a cost: loss, risk, opportunity 

• Goal 1: Find highest-quality parameters 

• Goal 2: Minimize cost of measurement

- “quality” could be pnl, pnl - risk, etc.; you decide 
- Every day that you trade at a suboptimal parameter — even if you’re making money — you’re paying an opportunity cost.  You’ve missed out on the 

extra money you would have made by trading at a better parameter setting. 
- competing goals: Goal 1 says “more measurements”, Goal 2 says, “fewer measurements”



Satisficing

• Guess parameters (“reasonable”) 

• Do they work? Be thankful and don’t touch!

- satisfice = “satisfy” + “suffice”  [ https://en.wikipedia.org/wiki/Satisficing ] 
- go build another strategy: other instruments, other markets, etc. 
- at HFTMM: scaled-up satisficing; ran many small strategies, turned off ones that lose money 
- Why optimize?  (i) lots more revenue available, (ii) System loses money w/o it, (iii) don’t have experience/intuition to guess 



A/B Test

• Compare two parameter sets / policies 

• Call them “Policy A” and “Policy B” 

• Ex: threshold=1 vs. threshold=2 

• Ex: “JPM SOR” vs. “KCG SOR”

- can compare continuous parameter values or categorical, non-parameterized design decisions 



A/B Test

• Trade A and B side-by-side for N days 

• N determined by noise level and desired 
precision

N ≈ σ2/δQ2

- sigma = std. dev. of a q measurement 
- delta Q= smallest Q(A)-Q(B) you care to detect 
- Ask, “Is B better than A?” 
- EXAMPLE: VWAP Buy + VWAP Sell for each of A and B to test a change in execution signals, N = 1 day 
- EXAMPLE: HFTMM in ~1000 stocks divided up into A & B sets to compare threshold (liquidity cost) settings, N = 10 trading days (two weeks) 

- nice overview: https://towardsdatascience.com/data-science-you-need-to-know-a-b-testing-f2f12aff619a



Improving A/B

• Lower cost of measurements 

• Evaluate more parameters, more settings

- Can we improve upon an A/B test? 
- What if B is a *lot* better?  Can’t we stop early and lower the cost? [No, b/c your plan to deal with noise required N days.] 
- What if we have more than two options to compare? A, B, C, …? A vs. B, then winner vs. C, then …   This could take a long time and be very expensive. 
- queue of ideas to try can fill up quickly; want to service that queue quickly, too
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Design of Experiments

• Evaluate multiple parameters’ settings 

• Choose which parameter values to measure to 
keep information high and cost low

- ex: threshold = 1, 2, 3, … 
- *not* JPM vs KCG, however 
- try to minimize # of experiments needs to evaluate settings of K parameters 



Design of Experiments

p1 p2 p3

- - -

+ - -

- + -
- - +

+ + -
+ - +

- + +

+ + +

p1 p2 p3
- - -
+ + -
+ - +
- + + 

Fractional 
Factorial

Factorial

- Factorial: all combinations, 2^n measurements 
- Fractional Factorial: Try to assess each parameter independently by removing pair-wise correlation; (only measure 1st and 2nd order effects) 
- avoid: “Hey! When I increased p1, quality improved!”  “But when you increased p1 you also increased p2.  So which parameter is responsible for the 

improvement?” 
- Fewer measurements = lower cost 
- EXAMPLE: MM strategies, would run full-factorial designs on two parameters and fractional factorial designs on three parameters 
- more complicated with more parameters; There are tables online. :) 
- What about values between - and +?  Can we be more precise?  Can we handle more parameters without a large number of experiments? 

NIST Engineering Handbook https://www.itl.nist.gov/div898/handbook/pri/section1/pri1.htm
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Response Surface 
Methodology

• Model (regress) quality vs. parameters from 
D.O.E data 

• Infer the best parameters from model! 

• Verify/Improve: D.O.E. around inferred-best

- Model (regress) quality vs. parameters 
- The “best” parameters likely won’t be in the data set. 
- Re-center the measurements around the inferred-best.  Then take measurements to verify your inference. 
- Repeat if desired until your inferred-best stops changing. 
- This is an iterative (manual) optimization routine 
- EXAMPLE: Designed intraday strategy, ~1000 stocks, using simulation.  Ran with various values of a threshold parameter, modeled quality vs. parameter, 

and set to inferred-best value. Did not iterate, however.



“Automated RSM”

Model (regress) response surface, Q(params) 

Maximize Acquisition Function, ex: Q + stderr Q 

Run experiment 

Repeat 

- many algorithms; Kriging, Bayesian Optimization, Efficient Global Optimization, Surrogate-function Black-Box optimization methods 
- (3) tries to optimally trade off the need to collect more data (to build a better model) which has a cost with the desire to trade at the optimal parameters; aka “exploration vs. 

exploitation” 
- exploitation => higher revenue now; exploration => higher revenue in the future 
- accounts for noise / uncertainty in each measurement, so each trading day can use a new experiment design; all data are combined optimally into RSM 

Efficient Global Optimization of Expensive Black-Box Functions http://www.ressources-actuarielles.net/EXT/ISFA/1226.nsf/0/f84f7ac703bf5862c12576d8002f5259/$FILE/Jones98.pdf 
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Multi-Armed Bandit Problem

• “one-armed bandit” == slot machine 

• MAB: K arms, each with different, noisy payout 

• Strategy to optimize total payout?

- MAB is a problem definition 
- “MAB methods” are ways to solve that problem 
- arms are parameter settings 
- K=2 arms == a more efficient A/B test 
- MAB cares about measurement cost 
- MAB handles multiple choices (not just two)



Multi-Armed Bandit Methods

1. Pull each arm several times 
Q(arm) = mean(arm quality measurements)  
Thereafter only pull highest-Q arm 

2. p=.9: pull highest-Q arm 
p=.1: pull random arm 

3. Pull arm with maximal “Q + stderr(Q)”

- (1) spends a lot of time measuring, but ultimately pulls the best 
- (2) (eps-greedy) “explores” 10% of time to improve estimates, but usually (90% of time) pulls the one we think is best; but never stops exploring 
- (3) (UCB1, if stderr is modified a bit) expression makes exploration vs. exploitation explicit; adds more samples to the noisier estimates (more efficient 

exploration); eventually stops exploring (more efficient exploitation);  

- EXAMPLE: HFTMM; would run ~10,000 arms each day dropping worst arms each night and adding new arms each morning;   arm design initially 
manual, but grew more and more systematic (and higher-parameter) over time 

Multi-Armed Bandit Algorithms and Empirical Evaluation https://cs.nyu.edu/~mohri/pub/bandit.pdf 
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Contextual Bandit

• context (aka. state) == signals, time of day, 
product traded, etc. 

• Q(arm, context) = regression model 

• Fit model from measurements so far 

• Decision like MAB: Q + stderr(Q)

- Follow same rules as MAB — 90%/10% or maximal mean+se, except means are replaced by conditional means, i.e. model’s prediction of arm quality 
- EXAMPLE: Execution Router: four brokers to route orders to; model slippage of parent order based on broker, time of day, product, other signals; 

rebuild model every night to “learn” from the day’s activity 
- EXAMPLE:  ad-hoc in HFTMM; choice of strategies to run was conditioned on time of day, market volume/volatility 

Learning for Contextual Bandits (slides) http://hunch.net/~exploration_learning/main.pdf 
A Contextual Bandit Bake-off https://arxiv.org/abs/1802.04064 
THOMPSON SAMPLING WITH THE ONLINE BOOTSTRAP https://pdfs.semanticscholar.org/d623/c2cbf100d6963ba7dafe55158890d43c78b6.pdf



Questions?



Reinforcement Learning

- modern ML methods; “AI”, even



Reinforcement Learning

• SL : Prediction :: RL : Control 

• RL Goals: 

• automate engineering of controllers 

• increase controller sophistication

- SL: predict outcome from signals; learn from examples (face recognition, translation) 
- RL: decide actions based on signals; learn from experience (Go, robots) 
- sophistication: more signals, more actions, more complex sequences of actions 

Sutton & Barto, Reinforcement Learning: An Introduction, http://incompleteideas.net/book/bookdraft2017nov5.pdf 
Robot Hand https://arxiv.org/abs/1703.06907



RL Methods

• Evolutionary Algorithms (DeepGA, OpenAI-ES) 

• Policy Gradient (PPO, DDPG) 

• Value-based (DQN) 

• Model-based (ME-TRPO, World Models)

- lots more, too 
- RL: flexible, parameterizes models; automated optimization of parameters 

DeepGA: https://arxiv.org/pdf/1712.06567.pdf 
OpenAI-ES: https://arxiv.org/pdf/1703.03864.pdf 
PPO: https://arxiv.org/abs/1707.06347 
DDPG: https://arxiv.org/abs/1509.02971 
DQN: https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf 
ME-TRPO: https://arxiv.org/abs/1802.10592 
World Models: https://arxiv.org/abs/1803.10122 



Sample Efficiency

• Most methods run (too) many experiments to run 
in production 

• Maybe: 

• Model-based methods 

• Meta-learning

- 1MM - 100MM “experiments” (simulation runs in published papers) 
- MBRL: experiments collect data, optimization happens in simulation 

- MBRL: http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_9_model_based_rl.pdf 
- Meta: http://www.cantab.net/users/yutian.chen/Publications/ChenEtAl_NIPS16Workshop_L2LBlackBoxOptimization.pdf



Model-Based RL

• Learn the simulator from data 

• Optimize controller in simulation 

• Run controller to collect more data 

• Repeat

- maybe optimize controller maximize pnl as well as collect more data to improve sim 



Meta RL

• Construct an optimizer customized for: 

• Your controller and your environment 

• Optimize the optimizer in simulation 

• Optimize the controller by experimentation

- custom optimizer is flexible (lot of parameters) 
- (one) objective is to optimize controller with *very* few experiments



Questions?


