Experimental optimization
Lecture 9: Response surface methodology
Review: Experimental cost

• Experiments are expensive:
 • They take time to run
 • They put users at risk of bad experience
 • They cost money: engineer’s salary, lost revenue
• The only way to reduce this cost is to take fewer measurements.
• Research into experimental methods seeks to reduce the number of measurements required to achieve an experiment’s goal
Experimental optimization

- One view of experimental optimization is “optimization with an expensive objective”
- Optimization generally: find the highest-value parameter or configuration
- Experimental optimization: optimize when “value” (business metric) is determined by an experiment; experiments are expensive
Specialization
Reduce cost for special cases

• One way to reduce costs is to create methods that take advantage of features of some subclass of systems

• Ex: Specialize to systems with a continuously-valued parameter

• Won’t work to optimize, ex., flags/booleans, categorical parameters discrete parameters; ex:
 • flags: use old ML model or new ML model
 • categorical: route orders to NYSE, NASDAQ, or BATS (exchanges)
 • discrete: Show the top K posts, where K in \{1,2,3,4,5\}
Specialization

Continuously-valued parameters

- Examples of continuously-valued parameters:
 - Trading threshold like “If E[return] > threshold, BUY”. Which threshold value maximizes profit?
 - Ranking signal weight: Order posts by signal_1 + w*signal_2. Which weight value maximizes number of posts viewed?
 - Fraud-detector threshold like “If P{fraud} > threshold, reject transaction”. Which threshold maximizes revenue?
 - Any real value in some range would be an acceptable threshold or weight.
Optimizing continuous parameters
Competing concerns of business metric

• Trading threshold, profit = [# trades] * [profit/trade]
 • Too high, then too few trades.
 • Too low, then too little profit/trade.

• Ranking signal weight
 • Too high, maybe users spend time commenting & don’t scroll
 • Too low, maybe users just don’t like the posts they see

• Fraud-detector threshold:
 • Too high, too much revenue lost to fraud
 • Too low, too much revenue lost by rejecting good transactions
Optimizing continuous parameters

The response surface

- Curve is called the *response surface* (RS)
- RS is the function “BM vs. parameter”
- Typically a “hump” because of competing concerns
- You can’t observe the response surface.
- How could you find the maximum using experiments?
A/B testing
On a response surface

- Measure one low parameter value (A) and one high parameter value (B)
- Pick the better of the two
- This case: Choose B, higher BM
- B is not at the maximum.
- You could run more A/B tests, but how can you do that efficiently?
- You don’t observe the response surface, only the dots
Multi-armed bandit
On a response surface

- Choose an evenly-spaced grid of parameter values as arms
- Run MAB to find best arm
- Want to get closer to maximum?
 - More arms
 - Longer experiment
Response-surface methodology
Model the response surface directly

- Assert that the response surface (RS) has a hump
- Model the hump as a parabola
- Model is called a *surrogate function*
- You need three points to define a parabola
 - Two points define a line
- Take measurements at three parameter values
Response-surface methodology

Model as parabola
Response-surface methodology
Model the response surface directly

- Three measurements of BM at low, medium, high parameter values
- Model as parabola: $BM = BM_0 - (\text{parameter} - \text{parameter}_0)^2$
- Or, with $y = BM, x = \text{parameter}$
- $y = y_0 + (x - x_0)^2$
- Equivalently: $y = ax^2 + bx + c$
- Use linear regression to find a, b, c
Response-surface methodology
Optimize over the model RS

• Now you can “see” the response surface, b/c you can plot your model parabola

• The maximum is at a value that you did not measure

• To find this maximum with A/B testing or MAB would have required many more measurements
Response-surface methodology
Only an approximation

• Surrogate (model of RS) is only an approximation
• Validate by measuring at the predicted-best parameter
• You have collected four measurements.
• If you want an even better approximation, rebuild the model with all four measurements
 • Maybe shift the parameter range if the optimum is near the edge
• Then reoptimize, validate the new optimum, …
• Repeat until your predicted-optimum stops moving.
Response-surface methodology (RSM)

Summary of method

1. Design: Choose parameter values to measure
2. Run: Measure business metric
3. Analyze: Interpolate, Optimize
4. Validate: Measure optimum

Accept optimal parameter

- Optimum not found
- Measurement ≠ estimate
RSM measurements
Use N from A/B testing

- RSM measurements are aggregate measurements

 \[N = \left(\frac{2.48\hat{\sigma}}{PS} \right)^2 \]

- PS here says “If the BM of two parameters is within PS, I’ll treat them as equivalent”

- Alternatively, “I want to be within PS of the true optimum”
RSM optimization

Grid search

- Optimization over the model is cheap, so evaluate many parameter values
- Use a grid search
- Pick the parameter with the highest model BM
- Ex: `np.linspace()`, `np.where()`
Response-surface methodology

Multiple parameters

- Might want to optimize two thresholds or a threshold and a weight
- Could optimize separately but generally simultaneous optimization finds a better answer (see book appendix B)
- RSM works on 2 parameters — maybe even up to 5, with more advanced techniques
- We’ll skip all that and learn Bayesian optimization instead
- Use RSM for one- or two-parameter problems where you’d prefer to visualize results and be “hands on” with the system
 - Ex., where you are uncertain about parameter ranges, concerned about system safety, unsure of tooling quality, or just in early stages of dealing with a system
Response-surface methodology
Local vs. global optima

- RS might have multiple humps
- You want the highest hump
- RSM will only search locally
- Think hard about parameter range
- Local optimum is better than no optimization at all!
Response-surface methodology

Summary

• Motivation: Reduce experimentation cost for continuously-valued parameters
• Surrogate function: Model the RS (BM vs. parameters) with linear regression
• RSM is interactive: You make decisions about where to measure and view visualizations
• RSM is iterative: You might repeat the design-measure-analyze loop multiple times