Experimental optimization

Lecture 8: Multi-armed bandits ll: Thompson sampling

David Sweet



Review

Versions / arms

« Compare “version A” to “version B”, or

e Compare “arm A” to “arm B”

e Also could compare arms A, B, C, D, ...

« Examples
e A =old ML model, B = new ML model with more features
A =place ad on top, B = place ad on side, C = overlay ad

* A =low threshold, B = medium threshold, C = high threshold



Review
A/B test vs. epsilon-greedy

* Goal: Choose arm/version with highest expected (true) business metric.

 A/B test: Randomize 50/50 between A & B, N times.

e Epsilon-greedy: Randomize 90% to the arm that’s “better so far” and €=10%
to the other arm.

 Decay € and stop when € is very small.
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Review

Meta-parameters

 A/B test: Choose FPR, FNR limits (5% and 20%)

* Epsilon-greedy: Choose a value for ¢, the meta-parameter and a threshold
telling us when to stop (when eps is small enough)

 meta-parameters determine how the experimental method operates

» Contrast with parameters which determine how the engineered system
operates

* Prefer not to have to tune meta-parameters since that would require many
experiments (a “meta-experiment”?)



Randomization

Epsilon-greedy modifies randomization

 Given n, individual measurements of A, n;, ind. meas. of B

 A/B: Run A or B with equal probability
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. Epsilon-greedy: i, =

n, ny,

e 90%:If u, > p,, run A, else run B
 10%: Run A or B with equal probability



Thompson sampling

Also modifies randomization

 Given: n, individual measurements of A, n;, ind. meas. of B

~J/

 Sample from ind. meas. with replacement: a., b, “Bootstrap”
. 2 a4 - 2 b,
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« 100%: If u, > u,, run A, else run B



Compare

Two multi-armed bandit solutions

Epsilon-greedy Thompson sampling

| Randomness generates
— Resample ind. meas.

exploration
Calculate agg. meas. Calculate agg. meas.
from ind. meas. from resampled ind. meas
Rang 90%: Choose arm with 100%: Choose arm with

anaomness highest agg. highest agg.

generates

exploration

— — 10%: Choose randomly —




Thompson sampling

Bootstrap sampling

def bootstrap_sample(x):
return x[np.random.randint(len(x), size=(len(x),))]

« Sample from ind. meas.

_ N bootstrap_sample(np.array([1,2,3,4]))
with replacement: d;, b;

: array([3, 4, 4, 2])
» Kind of like rerunning the .
. . . for _ in range(10):
experiment up to this point print (bootstrap_sample(np.array([1,2,3,4])).mean())

and getting a new set of
individual measurements
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Thompson sampling

Bootstrap sampling

e Recall:

» Aggregate measurement, u , iIs an estimate of the expectation of the
individual measurements, a,, I1.e., the true BM

 CLT says agg. meas. approximates a normal distribution (for large N)
 Each experiment gives a single aggregate measurement

* (But | did say bootstrap was like running another experiment...)



Thompson sampling

Bootstrap sampling

 With B.S. sampling, you can
generate many agg. meas.,

U, from a single set of
Ind. meas.

e Even for small N

agg = np.array([bootstrap_sample(np.array([1,2,3,4])).mean()
_in range(10000)])
plt.hist(agg, 25, color=yu.clrl);
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Bootstrap sampling

 Each value, jt is an equally-
reasonable estimate of BM

e Note: More values near
the middle (taller bars),
where the true BM Is

Do you believe this?

—— T

Thompson sampling

agg = np.array([bootstrap_sample(np.array([1,2,3,4])).mean()
_in range(10000)])
plt.hist(agg, 25, color=yu.clrl);
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Thompson sampling

Bootstrap sampling

e Decision rule: If yi, > p;, run A.

 Based on a single bootstrap sample.

» Different bootstrap sample ==> different decision.
 Think: P{y, > pi,} == P{l run A}

 OR, P{A is better} == P{l run A}

 Calc many B.S. samples and check jt, > p, each time.

 The fraction of time that y, > p, can be thought of as the probability that A is better than B
as far as | can tell from my individual measurements.

“belief”




Thompson sampling

Randomized probability matching

» Therule: “Run A'if i1, > (i)

« Randomize to run A in proportion to the probability that A Is better than B.

» For multiple arms, “Run arm k if j;, = max{ i }”

» Randomize to run arm k in proportion to the probability
that arm k is the best arm.

* “probability matching”: P{running an arm} = P{arm is best}



Thompson sampling

Exploration vs. exploitation

* Exploration: Always allocating some individual measurements to worse arms

* Exploitation: Allocating more individual measurements to better arms

« P{arm k is best} equal for all k at the start, then differentiates as more
individual measurements are collected

» Stop when highest P{arm k is best} > 1.0 - threshold

* No meta-parameters besides threshold



Exploration vs. exploitation

e (Gets easier to tell the
distributions apart as
more Ind. meas. are taken

e (@) —> (d) increasing N

Thompson sampling
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Thompson sampling
Stopping

e Estimate P{A is better} by  1.0-
comparing many
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bootstrap sample means 0.8 -
e P{A is better} = e '.'\’
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Thompson sampling

Compared to epsilon-greedy

* [pro] Thompson sampling does not require you to choose the
meta-parameter ¢

* [con] Thompson sampling is more complex than epsilon-greedy because
It needs all of the individual measurements available to make a
randomization decision.

 Chapter 3 discusses a practical solution to this problem



Thompson sampling

Summary

 Randomize like this:
« Create bootstrap mean for each arm, y,
» Run arm kif fi;, = max{ .}

* Equivalent to randomized probability matching:
e P{run arm k} = P{arm k has the highest BM}

« Stop when the the highest P{arm k has the highest BM} > 1.0 - threshold



