Experimental optimization

Lecture 2: A/B testing I: Overview
Review
Expectation

• Game:
 • Flip a coin
 • Heads: You win $1
 • Tails: You lose $1

• What is the expectation?

• What is expectation?
Review
Expectation, sample mean

- RV is X
- *Expectation* of one play of the game:

 $$E[X] = P\{H\} \times \$1 + P\{T\} \times (\ - \$1) = \$0$$

- Expectation is unobservable: One play of the game never returns 0.
- Estimate expectation by the sample mean over N plays:

 $$E[X] \approx \sum_i x_i / N$$
What other unobservable quantities have you estimated?
Workflow / pipeline

Zoom in

1. Implement change
 - Pass
 - Fail

2. Evaluate offline
 - Pass
 - Fail

3. Measure online
 - Pass (Accept)
 - Fail (Reject)

4. Design
 - Determine number of measurements to take

5. Measure
 - Take multiple measurements of business metric

6. Analyze
 - Decide whether to accept or reject B version
Aside: Simulators

- Book uses simulator as stand-in for real system
 - Python function s.t. \(\text{business_metric} = f() \)
- For class: Take real measurements on simulated system
- At work: Take real measurements on a real system
- Analogy:
 - In a class on regression, SL, NN, etc. you use sample data sets.
 - In (this) class on experimentation you’ll use simulators.
Measure

Record business metric values

- Log values in production, post-process into BM

<table>
<thead>
<tr>
<th>Business metric</th>
<th>Values logged</th>
<th>Post process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social media</td>
<td>Time spent per user per day</td>
<td>user id, date, time spent in a session</td>
</tr>
<tr>
<td>Credit card</td>
<td>P{fraud}</td>
<td>count of transactions, count of fraudulent</td>
</tr>
<tr>
<td>Trading strategy</td>
<td>PnL</td>
<td>trade prices and quantities</td>
</tr>
</tbody>
</table>
Measure

Variation

- Measured value varies from user to user, date to date, session to session, trade to trade, etc.
Analyze

Compare measurements

• Measure business metric once for A and once for B

• Sometimes measure BM(A)>BM(B), sometimes BM(B)>BM(A)

 • ==> unreliable decisions
Measure II
Replication reduces variation

- Replicate: Take multiple measurements and average them
- Measurements: \(x_i \sim X, i = 1 \ldots N \)
- Average: \(\mu = \frac{\sum_i x_i}{N} \)
- Replication reduces variation: \(\text{VAR}(\mu) \leq \text{VAR}(X) \)
Measure II
Standard error

- sample variance: $VAR(X) = \sum_i(x_i - \bar{x})^2/N$
 - estimate expectation: \bar{x} by μ, $\hat{x} = \mu$
 - define: $\sigma^2 = VAR(X)$

- No “sample variance” of μ b/c we only have a single μ value

- Instead, estimate (Asn1,q2) $VAR(\mu)$ by $VAR(\mu) = VAR(x)/N$

- Define standard error:
 $$SE = \sqrt{VAR(\mu)}, \quad \hat{SE} = \sigma/\sqrt{N}$$
Measure II

Standard error

\[\hat{SE} = \frac{\sigma}{\sqrt{N}} \]

larger N \rightarrow smaller SE
Measure II
Standard error

• You can’t control the variation in an individual measurement

You can control the variation in an aggregate measurement.

• Setting N sets the level of variation, SE, in the aggregate measurement.

• $\textit{precision} \sim \frac{1}{SE}$
Analyze II

Compare aggregate measurements

- **individual measurement**: x_i, $N=1$

- **aggregate measurement**: μ, $N>1 \implies$ more reliable decisions
Design

Minimize experimentation costs

• Tradeoff:
 • Larger N gives lower SE
 • Smaller N gives lower experimentation costs

• A/B test design optimizes N
 • Smallest N s.t. SE is “small enough”
 • (“small enough” discussed next lecture)
Measure III
Bias

- Example, credit card fraud detection system, \(BM = P\{\text{fraud}\}\)
 - version A: old ML model
 - version B: new ML model
- A/B test: Collect large N of BM(A), BM(B)
- Configure to run A in US and B in Europe
- BM(B) < BM(A) by a lot!
Measure III
Confounder bias

- Europe has EMV chip-card law.
- If you ran A in US and A in Europe, BM(A, Europe) < BM(A, US)
- So is B better than A, or is it just that Europe is better than US?
- Country (US/Europe) is a confounder
- Could fix by running A,B in both US and Europe.
- But what about the other confounders?

Do (could) we even know what they are?
Measure III
Randomization removes confounder bias

• Randomization:
 • Flip a coin every time a transaction enters the system.
 • Heads, use A
 • Tails, use B
• Randomization makes measurements accurate, i.e. unbiased
• Run for all transactions (US, Europe, etc.)

Don’t need to know what the confounders are!
A/B Testing

Summary

• Replication makes a measurement precise

• Randomization makes a measurement accurate

• A/B test design minimizes the experimentation cost for a measurement of a given precision

• An analogy:

 Variation : precision : replication

 :: Bias : accuracy : randomization