
David Sweet

Experimental optimization
Lecture 10: Contextual bandits

Review
Response surface methodology

• Reduce experimentation cost by specializing

• Reduced cost means fewer measurements

• RSM specializes to continuous parameters

• RSM can optimize 1-5 parameters

Review
Predictor-in-controller

• Predictor: Estimates a target, ex., P{click} on an ad

• Controller: Uses predictions to make a decision / choose an action

• ex., “Of the 1000 ads available, show the one with the highest P{click}”

Predictors in controllers

Controller Prediction Action Reward

Ad server P{click} Show ad with

highest P{click} CPC revenue

Fraud detector P{fraudulent}
Hold charges with high

P{fraudulent} until

customer gives OK

Avoid losing money

to fraud

Trading strategy E[return] Buy when E[return] > 0,

sell when E[return] < 0 Revenue (“PnL”)

Social media feed P{like} Show posts with

highest P{like}

Users spend more time

on feed

Industrial engineered systems

Contextual bandits
Specialization

• Can optimize many — millions — of parameters by specializing

• …to short-term business metrics, aka rewards

• Ex: CTR, likes, fraudulent transaction

• But not: DAU, daily pnl, purchase following ad, time spent per day

• …and predictor-in-controller designs

• The predictive model contains all of the CB-tunable parameters

• Each reward corresponds to a single prediction

Production logs

• Every time you show an ad, log

• features of the ad

• features of the user

• whether the user clicked

• data = , where

• = all of the features

• = 1 if clicked, else 0; “click indicator”

{(xi, yi)}

xi

yi

Typical design
Estimate P{click}

• Fit an SL model to the data, like

• logistic regression

• neural network

• Model may have many parameters

• Model estimates P{click} = click-through-rate = CTR

• More specifically: P{click | ad & user features} = CTR for ad

Typical design
Periodic refitting

• Fit model every day

• Use data from trailing month’s logs

• Production uses latest, refit model

• Refitting tracks changes in system over time

Problem: Missing counterfactuals

• P{click | Ad1} = .02, P{click | Ad2} = .01

• Controller chose to show Ad1

• Features and click indicator for Ad1 show up log

• No data collected for Ad2

• BUT: The model is wrong about P{click | Ad2}.

• The CTR for Ad2 is actually much higher, .03.

Typical design

• If we don’t show Ad2, then

• We won’t log any data for Ad2

• The model will fit from the same old data

• The model will still estimate P{click | Ad2} = .02

• Why is the model wrong about Ad2?

• Small-sample bias

• All models are biased. Only better data can fix that.

Typical design
Problem: Missing counterfactuals

• counterfactual: What would have happened if we had done something else?

• I.e., What would have happened if we had shown Ad2 instead of Ad1?

• Without counterfactual data, 
the model can’t make a better 
prediction about Ad2.

• Instead, endless, feedback loop

Typical design
Problem: Missing counterfactuals

Solution: Exploration
Collect the counterfactuals

• Each time you show an ad:

• exploit: w/ probability 0.90, use the model, as before

• explore: w/ probability 0.10, show an ad at random

• Every day, exploration will collect some counterfactuals— ads that wouldn’t
have been shown by the model

• The counterfactuals show up in the logs, thus in the data

• This debiases the data which debiases the model

Biased

Unbiased

• Think of each ad as an “arm”, then this is epsilon-greedy

• Breaks the feedback loop

• You’re running an experiment 
to optimize the parameters of 
the predictor’s model

Solution: Exploration
Collect the counterfactuals

Contextual bandit
Generalization of multi-armed bandit

• Each ad is an arm

• MAB: = avg. CTR for ad = estimated CTR

• CB: P{click | features of ad and user} = estimated CTR

• “features of ad and user” called the context,

• hence the name contextual bandit

• Set “features = 1”, i.e., just fit an intercept, then CB == MAB

μad

Policy classes

Naive: Show ad with best CTR so far MAB: Explore to get unbiased data

P-in-C: Predict CTR from ad id and other
features CB: Explore & predict

Solution 2: Explore models

• Model weights are found by fitting (regression)

• Model weights have errors:

• ex., linear regression yields betas and standard errors of betas

• Alas, SGD yields NN weights, but no errors

• Given a fitting routine that returns weights, ex., Python function fit(data)  
how could you find the standard errors of the weights?

Errors in weights

• Bootstrap!

• Take B bootstrap samples of the data

• Run fit() on each bootstrap sample to find B weight vectors

• Then std() of the B weight vectors is the SE of the weight vector

• Works for any model type, linear regression, logistic regression, NN, random
forest, SVM, etc.

Solution 2: Explore models

Thompson sampling

• Use bootstrap for Thompson sampling

• Each time you need to show an ad:

• Take 1 bootstrap sample of data

• Run a fit to find 1 weight vector

• Calculate P{click} using that weight vector

• Each weight vector defines a different model

• P{using a model} = P{that model is best}

• “best”: weight vector is closest to the “true” unobservable weight vector

Solution 2: Explore models

Analogous to: “Run arm if ”k μ̃k = max{μ̃k′
}

• fit() takes to long to run; can’t run for every ad

• Instead, offline:

• Generate B bootstrap samples (ex., B=10)

• Fit B models; an ensemble of models

• Online, for every ad:

• Choose 1 model from ensemble, randomly

• Use that model to choose which ad to show

Solution 2: Explore models
Thompson sampling, in practice

Thompson sampling

• Randomizes over / explores models instead of arms

• Optimal regret, unlike epsilon-greedy

• No meta-parameter to tune, unlike epsilon-greedy

• epsilon-greedy has same decay parameter, c, when used in CB

Short-term business metrics only

• If CB can optimize millions of parameters, why bother with, ex., RSM, which
can optimize 2 or Bayesian optimization, which can optimize, maybe 10?

• Catch: CB only works with short-term business metrics (rewards)

• Ex: CTR, likes, fraudulent transaction

• But not: DAU, daily pnl, purchase following ad, time spent per day

• CB needs (features, target) pairings and many samples in data set

• Ex: DAU is 1 number/day, even though many, many ads shown

Summary

• Perspective 1: CBs fix feedback loops that bias predictor-in-controller
designs by adding exploration

• Perspective 2: CBs improve MAB decisions by conditioning on context, i.e.
adding a prediction model

• Contextual bandits use exploration to collect unbiased data

• Thompson sampling explores models (weights), epsilon-greedy explores arms

• Contextual bandits enable optimization of many parameters,  
but only for short-term business metrics

